
ONE APPROACH TO CONSTRUCTING A METHOD FOR DESIGNING 

MODEL HEAT SHIELDS 

A. Yu. Bushuev and V. V. Gorskii UDC 536.2:51.380.115 

This paper proposes an engineering approach to construction of a method for de- 
signing multilayer heat shields that is based on iterative use of rigorous and 
simplified mathematical models and permits effective assembly synthesis on the 
basis of the condition that specified constraints on temperature conditions be 
satisfied. 

The optimum-mass solution to the problem of designing a one-dimensional assemblage 
(stack) with specified structure that will be exposed to a high-temperature environment 
and is characterized by constraints on the temperature conditions in individual zones is 
the solution of a problem of the type: 
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Tr ~ Tr i = 1, m, 
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Here the temperature conditions are described within the framework of the one-dimensional 
Fourier equation [i]. 

The penalty function method [2] is used to reduce problem (1)-(3) to the unconditional 
minimization problem 

n h 
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, .  , , ~  , - " ( 4 )  
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Various aspects of the development of methods for solution of this sort of problem 
were considered in [3, 4]. However, the above techniques have not found wide application 
in investigation of practical shield design problems. Considerably more frequent use is 
made of a simplified approach to assemblage synthesis based on seeking that combination of 
thicknesses for the individual layers (whose total number is m) which assures satisfaction 
of conditions having the form 

9~(hv.~,l . . . . .  h v a r , m )  = T r  . . . . .  hw~,.~)--Tr = 0, i =  1, m. (5) 

The present study is devoted to methodological problems pertaining to construction 
of solutions for problems of the type formulated above. 

One possible iterative approach to solution of problem (5) (which we will call algo- 
rithm i) consists in performing a sequence of operations in each k-th iteration: 

i (k) 
formation of an initial approximation nvar,i (]=l,m) for the layer thicknesses sought; 

calculation of the functionals ~)and their partial derivatives wh, ~,~(k) with respect 

to the arguments hvar,j (i,]= l,m) using the heat conduction equation; 

^h (k) ~ satisfying the system of linear determination of the layer thickness increments ~ var,j 
algebraic equations 
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Fig. i. Structure of search for problem 
solution, i) Input of initial data; 2) 
initial formation of corrective links; 3) 
simplified mathematical model; 4) module 
for making decision as to whether to con- 
tinue search for solution in inner loop; 
5) rigorous mathematical model; 6) module 
for making decision as to whether to con- 
tinue search for problem solution in outer 
loop; 7) current formation of corrective 
links; 8) exit from iterative process. 

2 ~(h) ^~(h) (k) ( 6 )  

i = l  

o b t a i n e d  by  l i n e a r i z a t i o n  o f  s y s t e m  o f  e q u a t i o n s  ( 5 ) .  

The transition from the k-th to the k + l-th iteration is made with equations having 
the form 

h ( h + l . )  h ( h )  . A ( h )  vat,1 = ' w a F , J + ~ t , . f ,  ] =  1, m, k =  1, 2 . . . .  ; 

(Ah(h) . (h) ^ (k~ [Ahwr,/I v a t , /  , 

i=177,, 
k?,(~) . R h (k) (~) . . . .  ~,i = el, ~ , J  s ign  (Ah~r , j ) ,  j = 1, oz. 

(7) 

(8) 

( 9 )  

The iteration process is terminated at that iteration ~ in which the condition 

is satisfied. 

Specific calculations made with this algorithm will be given below, the effectiveness 
of algorithm i is to a considerable extent determined by the choice of initial approxima- 
tion. Moreover, special emphasis must be placed on the fact that use of adequately fitting 
mathematical models (particularly those that take into account the dependence of thermo- 
physical properties on temperature and pressure, the nonlinearity of the boundary conditions, 
and the multidimensional nature of the problem) in this scheme often leads to expenditure 
of large amounts of computer time in order to obtain the solution sought. 

When this sort of situation arises, one generally proceeds by utilizing simplified 
mathematical models of the process under investigation. However, alternatives must be 
sought'if this approach does not yield a satisfactory solution to the problem (because of 
violation of restrictions on the permissible error in the solution found). 

One effective way to overcome these difficulties was reported in [5], which describes 
investigation of mathematical models of radiative-convective heat transfer in high-temper- 
ature shock layers. 

We can, utilizing this latter study, propose the following search structure (depicted 
in Fig. I) for seeking a solution described by complex reentrant mathematical models (in 
[5], this reenterability was a product of the use of iterative methods for iteration pro- 
cesses with relatively slow convergence). The overall procedure for seeking a solution is 
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Fig. 2. Types of structural stacks. 1-5) Material 
numbers (see Table i). 

subdivided into two loops: linear and outer. The outer loop employs a materially simpli- 
fied analog of the original mathematical model, and the number of solutions can be quite 
large. Each time that thesolution search process exits into the outer loop, the accuracy 
of the solution obtained in the inner loop is analyzed (using a strict mathematical model 
of the phenomenon under investigation) and a certain number of corrective links is formed 
to eliminate the errors in the particular solution search phase that are associated with 
the simplified mathematical model in the inner loop. As a result, the problem solution 
can be taken as exact when the interations in the outer loop converge. 

Use of this approach is effective only when the solution sought is obtained after a 
relatively small number of outer-loop iterations, which can in turn be assured only with 
a good choice of the simplified mathematical model for the process under investigation and 
of the principle utilized to construct the corrective links. 

Construction of the numerical solution of the direct heat conduction problem in all 
stages of the present investigation is based on use of an implicit scheme for approximating 
the Fourier equation, with nonuniform partitioning of the domain of definition over the 
space coordinate and application of the trial-and-error method [6]. 

Simplification of the computation procedure in the inner loop of the dual-loop algo- 
rithm is based on use of thermoph~sical properties averaged over the temperature variation 
range under consideration (c and 4) for each layer of the stack and on significant reduc- 
tion of the number of integration steps over both the space and time coordinates. 

The maximum admissible contact temperatures serve as the corrective links between the 
simplified and rigorous mathematical models. 

Seeking the solution of the problem within the framework of this approach (which we 
will call algorithm 2) consists in performing the following sequence of operations in each 
p-th outer iteration: 

formation of the initial approximations ~(P>con. ~ (i= l,m) for the maximum admissible tem- 
peratures in the controlled contacts used in the inner loop; 

determination of the variable layer thicknesses h(s ) and the corresponding partial 
var, J 

derivatives ~hu,)[,(f ) (i, ]=l,ln), in complete conformity with algorithm i; 
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TABLE i. Properties of Materials 

Relationship Av. values Density 
Material 
number 

~,(T) c(T) Z c p 

30--5T 

( I-[-T+TZ)0,05 

0,04+0,0 IT+0,03T ~ 

0,4--~0, IT 

20+25~ 

1500+0,2T 

800+0,2T 

1800--T+400T 2 

--400+5T 

150+0,5T 

21 

0,1 

0,06 

0,45 

30 

1900 

1000 

1300 

1400 

450 

2100 

200 

100 

1800 

7880 

TABLE 2. Formulas for Calculating Heat Transfer at Stack 
Surface w 

qw (a /Cp) w [ Ie ,  w I vz 

(~/c~)~.(G,~-- lw) - -  

- -  ewoT ~ 

F/ T--1000 '~ [ 

/ ~ -  500 \21 

3.105(1-~ 100 • 
• cos (~/200)) 

954Tw + 

+0,0802T~ 

TABLE 3. Formulas for Calculating Heat Transfer at Stack 
Surface v 

Stack 
type qv ( c~ / Cp) v le,  a Iv  

15 (323-- Tv) + eva X 

• (333~ - T 4) 

(a/Cp)~ (I~,~ -- I~) -- 

- -  evoT ~ 

0,2 (OqCpho le,w 954T v + 0,0862T~ 

determination of the values of the functionals ~j: 

~ , F )  = ~r . _  6 r  , ] = 1, rn, 

and their partial derivatives ~(P) from the arguments hvar,j (i, ]=l?m) in the rigorous 
h,i,j 

formulation, with variable layer thicknesses h(~),<P); 
var,] 

determination of the increments 5h(P) in the layer thicknesses, which satisfy the 
var,j 

system of linear algebraic equations 

m 

~ a , i , i : ' ~ v a r , i  = -  , i = ], In, 
]=l  

(zo) 

(11)  

obtained by linearization of system of equations (i0); 

determination of the increments for the maximum admissible temperatures in the con- 
trolled contacts utilized in the inner loop, from the equation 

1153 



TABLE 4. Results Yielded by Solution of Stack Design Problem 

Stack! 
type ! 

1 

1 

2 

3 

Initial approx. 
--0 
h v a  r- 10 s I 

. 
Solution of problem Computation time T c 
~ar.10 3 with algorithm 

1 2 

(5; 5; I0) 

(20; 30; 30) 

(5; lo) 

(lO; 5) 

(17,7; 20,I;  35,2) 

(17,7; 20,1; 35,2) 

(25,3; 32,4) 

(39; 5,9) 

290 

82 

399 

649 

116 

107 

173 

109 

TABLE 5. Evaluation of Influence of Choice of Thermophysical 
Characteristics for Simplified Mathematical Model on Conver- 
gence Rate of Dual-Loop Algorithm 

Elements of simplified 
mathematical models 

O, 2 1000 

o, 1 i2oo 

Initial 
approx. 
--0 
hvar 

(5; 5; 10) 

(5; 5; 10) 

Solution of problem 

h v a r  

(17,7; 20,1; 35,2) 

(17,7; 20,1; 35,2) 

Computation 
time T c 

115 

138 

AT(P) ',~ . ( l ) .  (p) t,, L ( P )  - c o n , i =  ~ wh,i,! Zanvar,', i =  l ,  m, ( 1 2 )  
i=l  

which follows from (6). 

The transition from the p-th to the p + l-th outer iteration is made with formulas of 
the type 

T ( p + ! )  T ( p )  . A(p) con,~ ~---con,t-~-t~T,i, i ~ 1, m, p---- 1, 2 . . . .  ; 

lhTco,,il • IATcon,il, I- MT, (P) (P) ^ (p) 
A(r p), 

A,'~,(p) (P) A'~(P) v-.-co. , i  , [ATcon,il > con.i, 

i = 1, m; 

A'>(P) ~:r "r(P) " (P) -co . , i  = - c o n , i  -- T o l s l g n ( A T c o . , i ) ,  i = 1, rff. 

( 1 3 )  

(14) 

(15) 

The iteration process terminates at the r-th iteration step, where the conditions 

I~r)l  ~ 8~, i ---- 1, m 

are satisfied. 

The partial derivatives ~h,i.j and ~h.i~ (i,]= l,m) are computed by a numerical differ- 
entiation procedure. 

Since theoretical investigation of the proposed dual-loop iteration algorithm is a 
complicated separate problem in the general case. We undertook to confirm its workability 
and effectiveness in an extensive numerical experiment. 

We investigated various stack structures, considered both unilateral and bilateral 
heating with essentially nonlinear boundary conditions, and studied the influence exerted 
by the initial approximation and the elements of the simplified mathematical model (the 
constant thermophysical characteristics) on the convergence of the dual-loop algorithm. 

As an illustration of these investigations, we will examine the results yielded by 
solution of the design problem for three typical shields (Fig. 2). 
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The admissible temperatures are specified near the corresponding controlled contacts. 
The thicknesses in mm are indicated for the invariant layers. 

The thermophysical characteristics of the materials and the formulas for the heat 
transfer parameters used in the calculations are given in Tables 1-3. The emissivities 
of all the structural stacks taking part in radiative heat transfer were assumed to equal 
0.8, while values of 0.2 and 0.5 respectively were used for the parameters ~h and ~T in 
Eqs. (9) and (15), which limit the rate of change of the parameters hvar, j and Tcon, i in 
the iteration processes. 

The basic results of this investigation, which was conducted with an El'brus I-2K 
computer, are given in Table 4. It can be seen that algorithm 2 had a computation time 
advantage over algorithm 1 in all cases except when the computations were made with a 
fortunately chosen initial approximation, whereupon the calculation procedures in ques- 
tion were more or less "equivalent." 

As an example, Table 5 gives the results of design calculations made for a stack of 
the first type, with the other parameters of the simplified mathematical model different 
from those adopted in Table i. The computations showed that the choice of a quite broad 
range of elements for the simplified mathematical model had little influence on the con- 
vergence rate of the dual-loop algorithm. 

The results of this computer experiment enable us to state that the iteration pro- 
cess we have constructed converges for a wide variety of practical problems, regardless 
of the choice of the initial approximation and the approximate mathematical model. 

Analysis of our computations shows that the proposed approach to construction of a 
solution method for the problem of designing a multilayer heat shield based on the con- 
dition that specified constraints on temperature conditions be satisfied is effective and 
quite simple to implement. 

It should be noted that the optimal solution to the mass minimization problem in 
the formulation of (4), which was obtained by a direct Huck-Jeeves search [7], was found 
to coincide with the solutions found by procedures 1 and 2 for all the cases considered. 
This is still another argument in favor of the wide use in engineering practice of the simpli- 
fied formulation of (5). 

NOTATION 

% ~) functionals, K; T, 8) temperatures calculated from simplified and rigorous 
models respectively, K; T, @) maximum admissible temperatures utilized in inner and outer 
loops, K; Tcon, econ) temperatures of controlled contacts for simplified and rigorous 
models, K; T o ) initial assemblage temperature, K; T = T/1000; qw, qv) incoming heat flux 
densities at stack boundaries w and v, W/m2; c) specific heat capacity, J/(kg.K); c) aver- 

age specific heat capacity, J/(kg.K); ~) coefficient of thermal conductivity, W/(m.K); 

~) average coefficient of thermal conductivity, W/(m.K); p) material density, kg/m3; 

hva r = (hvar, l ..... hvar, m) collection of variable stack layers, m; 6j) minimum admis- 
sible thickness of variable layer, m; Sw, sv) emissivities of stack boundary surfaces; 

Ie,w, Ie,v) enthalpies of gas stream reduction at stack boundary surfaces, J/kg; Iw, Iv) 
enthalpies of gas stream reduction at temperatures of walls w and v, J/kg; (~/Cp)w, 

(~/Cp) v) heat transfer coefficients at surfaces w and v, kg/(m2.sec); o) Stefan-Boltzmann 

constant; T) time, sec; ~c) computation time; E i = 6 i = 0.01) required accuracies of itera- 
tion processes in inner and outer loops; ai, bj) penalty coefficients. Index on thermo- 
physical properties denotes number of material used (see Table i). 
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